ENERGY ACTIVATION OF DECOMPOSITION OF CASTINGS OF PURE ALUMINUM-STANNUM ALLOY

Authors

  • Aldika Aldika Department of Mechanical Engineering, Faculty of Engineering, Universitas Sriwijaya, Indralaya 30662, South Sumatera, Indonesia
  • Nukman Nukman Department of Mechanical Engineering, Faculty of Engineering, Universitas Sriwijaya, Indralaya 30662, South Sumatera, Indonesia

DOI:

https://doi.org/10.51630/ijes.v3i2.60

Keywords:

Aluminum, Stannum, Oxidation, TGA, Activation Energy

Abstract

Thermogravimetry analyser is a tool to perform thermal analysis where the mass of the test material will be inversely or directly proportional to the increasing temperature rate and a function of time (constantly increasing temperature). The results of the TGA test are a comparison of mass to times, mass to DTA, and the ln k to 1/t; all relations to determine the oxidation point and activation energy required for each sample can be known. The samples used were 4: pure aluminium, pure aluminium mixed with 2% Sn, pure aluminium mixed with 6% Sn, and pure aluminium mixed with 10% Sn. The activation energy required for each sample is as follows, pure Aluminium of 64.24 kJ/mol, pure Aluminium mixed with 2% Sn of 58.70 kJ/mol, pure aluminium combined with 6% Sn of 16.63 kJ/mol and Aluminium pure mixed with 10% Sn at 47.68 kJ/mol.

Downloads

Download data is not yet available.

References

G. E. Totten and D. S. Mackenzie, Handbook of Aluminum Volume 1 Physical Metallurgy and Process, 1st ed. New York: Marcel Dekker, Inc., 2003.

T. Surdia and S. Saito, Pengetahuan Bahan Teknik. Jakarta: PT. Pradnya Paramita, 1999.

Capral, Capral’s Little Green Book., vol. 6. Australia, 2015.

ASM-Handbook, “Introduction to Aluminum and Aluminum Alloys,” in Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, 10th ed., vol. Vol. 2, United States of America: ASM International Handbook Committee, 1990.

D. R. Askeland, P. P. Fulay, and W. J. W. Wright, The Sciences and Engineering of Materials, Sixth. Cengage Learning, Inc., 2011.

T. Surdia and K. Chijiwa, Teknik Pengecoran Logam, 9th ed. Jakarta: PT. Pradnya Paramita, 2006.

P. S. Hermawan, H. Purwanto, and S. M. B. Respati, “Analisa Pengaruh Variasi Temperatur Tuang pada Pengecoran Squesze Terhadap Struktur Mikro dan Kekerasan Produk Sepatu Kampas Rem dengan Bahan Aluminium (Al) Slikon (Si) Daur Ulang,” Fak Tek Univ Wahid Hasyim Semarang, 2013.

P. H. Sowiyk et al., “Pengaruh Penambahan Unsur Timah (Sn) terhadap Sifat Fisis dan Mekanis pada Material Bearing Berbahan Dasar Aluminium (A ) Hasil Pengecoran HPDC,” vol. 4, no. 3, pp. 290–298, 2016.

Nukman, I. Yani, A. Arifin, and F. Ms, “Oxidation of Beverage cans in the Temperature Range 400-610oC,” ARPN J Eng Appl Sci, vol. 13, no. 24, pp. 9741–9745, 2018.

Nukman, M. Dahlan, M. S. Firdaus, I. Yani, and A. Arifin, “Besaran Energi Aktivasi dari Oksidasi Hasil Pengecoran Aluminium Kaleng Minuman yang Mendapat Perlakuan Panas Quenching dan Annealing,” J Austenit, vol. 11, no. 2, pp. 47–53, 2019.

Y. Setiawan, “Karakteristik Pembakaran Briket Arang Berbahan Baku Sampah Kota dengan Analisa Termogravimetry,” Turbo J Progr Stud Tek Mesin, vol. 1, no. 2, pp. 86–94, 2012.

W. U. Dewi, “Evaluasi Kinetika Dekomposisi Termal Propelan Komposit AP/HTPB dengan Metode Kissinger, Flynn Wall Ozawa dan Coats - Redfren,” J Teknol Dirgant, vol. 15, no. 2, pp. 115–132, 2018.

M. E. Brown, Introduction to Thermal Analysis, Second. New York: Kluwer Academic Publishers, 2004.

S. Hasani, M. Panjepour, and M. Shamanian, “The Oxidation Mechanism of Pure Aluminum Powder,” Oxid Met, vol. 78, pp. 179–195, 2012.

Downloads

Published

2022-07-16

How to Cite

Aldika, A., & Nukman, N. (2022). ENERGY ACTIVATION OF DECOMPOSITION OF CASTINGS OF PURE ALUMINUM-STANNUM ALLOY. Indonesian Journal of Engineering and Science, 3(2), 061–069. https://doi.org/10.51630/ijes.v3i2.60